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The coherent, interlayer conductance of misoriented bilayer graphene ribbons is a strong function
of the Fermi energy and magnetic field. Edge states can result in a large peak in the interlayer
transmission at the charge neutrality point that is several orders of magnitude larger than the
surrounding low-energy transmission. The coherent interlayer conductance is consistently
asymmetric around the charge neutrality point for all structures with the value differing by up to 3
orders of magnitude at Ef¼60.05 eV. The low-energy states exhibit a high magnetoconductance
ratio, and the magnetoconductance ratio tends to increase as the width of the ribbons decrease.
The maximum value for the 35 nm wide bilayer ribbons at 10 T is 15 000%. Non-equilibrium
Green’s function calculations of the interlayer transport properties are also supported by
semi-analytical calculations based on Fermi’s Golden Rule. VC 2013 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4830019]

I. INTRODUCTION

The electronic structure of bilayer graphene is highly
sensitive to the stacking geometry.1,2 Experimentally, the
layers of bilayer or multilayer graphene tend to be rotated
(i.e., twisted or misoriented) with respect to each other.3–5

The need to understand the electronic properties of twisted
graphene layers stimulated a number of theoretical and ex-
perimental investigations.4–16 The low energy states in each
layer of misoriented bilayer graphene are effectively
decoupled and maintain a linear dispersion for twist angles
greater than a few degrees. Turbostratic graphitic structures
maintain the high mobility of graphene.17 The electronic
decoupling and high interlayer resistance is a coherent quan-
tum effect resulting from destructive interference between
the electron wavefunctions of the two rotated layers.8

The coherent interlayer transmission is a strong function
of the twist angle, and it can be strongly suppressed giving
high interlayer contact resistances.18 Bistritzer and
MacDonald found coherent interlayer contact resistances
changing by 16 orders of magnitude as the rotation angle is
changed by 30".18 Resistances values varied from 1015 Xlm2

to 0:1 Xlm2. Recent calculations of the phonon-mediated,
interlayer conductance indicate that the phonon-mediated
current is a significant interlayer transport mechanism at
room temperature.19 The phonon-mediated current has a
weaker dependence on rotation angle. At room temperature
with a Fermi level 260 meV above the Dirac point, the inter-
layer resistance was found to smoothly vary from 50 Xlm2

at small rotation angles of a few degrees to 330 Xlm2 at a
rotation angle of 30".19 Experimental measurements found
similar trends but a higher resistance that varied from
750 Xlm2 to 3400 Xlm2.20

The coherent electronic decoupling between two dimen-
sional rotated graphene sheets is still present when the over-
lap region is scaled to a few nanometers.9 Two armchair

nanoribbons (AGNRs) overlapping at an angle of 90" result
in a misoriented overlap region with a crystallographic rota-
tion angle of 30". Even with an overlap region of
1.8 nm# 1.8 nm, the coherent interlayer transmission is
reduced by approximately 5 orders of magnitude. In such
structures, an interlayer voltage can result in a large modula-
tion ($103) of the coherent interlayer current.9 The vibra-
tional modes and their effect on the current of the crossed
graphene nanoribbon (GNR) system have not yet been
investigated.

In addition to electronic properties, the unique chiral na-
ture of quasi-particles in graphene results in a novel quantum
Hall effect21–23 that opens a new possibility for spintronic
applications.24,25 The integer quantum Hall effect in bilayer
graphene indicates the presence of massive chiral quasipar-
ticles26 with a parabolic dispersion at low energy. The elec-
tron motion in twisted graphene is modulated by the
application of an external perpendicular magnetic field (B-
field). The B-field introduces the Peierls phase in the Bloch
functions and thus modifies the energy-momentum disper-
sion, the subband spacings, the energy width, and the local
density of states.27–29 At sufficiently large magnetic field, the
cyclotron diameter of the electron motion becomes smaller
than the GNR width, resulting in the formation of Landau
levels.27,30

GNRs can have interesting magneto-electronic proper-
ties with high magnetoresistance.24,31–33 GNRs with zigzag
edges (ZGNRs) have shown magnetism both theoreti-
cally24,34,35 and experimentally.36 A spin-valve device based
on a graphene nanoribbon has been reported where the mag-
netoresistance is configured with two ferromagnetic (FM)
states of ZGNR electrodes (parallel vs. antiparallel align-
ments), and the results of first-principles simulations exhibit
high magnetoresistance values.24 Saffarzadeh and Asl33

investigated spin polarized transport of the planar
FM/Graphene flake/FM junction with zigzag interfaces and
showed that the junction exhibits a spin valve effect with
magnetoresistance ratios as high as 95%. Experimentally a
10% magnetoresistance ratio in a GNR based spin valve
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device has been observed, where a 200 nm GNR was con-
nected to NiFe contacts.37 Another experimental study
reported a negative magnetoresistance of nearly 100% at low
temperatures, and over 50% at room temperature.31 Hwang
and Sarma38 predicted a negative magnetoresistance for
intrinsic graphene and a nonmonotonic magnetoresistance
for extrinsic graphene with a parallel magnetic field. In most
of the previous studies, a magnetoresistance effect was
induced by a change in the relative magnetic orientations of
FM contacts.

In addition to the above intrinsic properties, novel van
der waals (vdW) heterostacks of graphene and non-graphene
layers (MoS2, hBN, Bi2Te3, TiO2, etc.) have been
demonstrated.39–50 Several types of heterostructures consist-
ing vdW materials have been proposed for various applica-
tions, such as high mobility electronic devices,39 molecular
scale electronic devices,40 nonvolatile memory cells,43 and
magnetic field effect transistors.44 The fabrication approach
often consists of creating various individual materials by
exfoliation and/or growth followed by mechanical stack-
ing.47 Such a procedure naturally leads to misoriented
interfaces.

The coherent interplane transport between misoriented
graphene layers is governed by quantum interference and the
relative phases of the wavefunctions of the two layers. Since
magnetic fields modify the phase of the electronic wavefunc-
tion, one might expect that the interlayer transport could be
sensitive to an applied magnetic field. Any real structure is
finite in size. It has edges where localized edge states can
exist. If the scaling laws for heterostructure bipolar transis-
tors serve as a guide, the horizontal dimensions of devices
proposed to attain THz cutoff frequencies must be on the
order of tens of nanometers.51 For these reasons, we investi-
gate the interlayer transport between two stacked graphene
ribbons with a crystallographic misorientation of 30". Such a
geometry results from an armchair ribbon on a zigzag rib-
bon. The widths of the nanoribbons considered range from
35 nm to 70 nm. The interlayer magnetoconductance (MC) is
calculated as a function of Fermi level and perpendicular
magnetic field. The magnetic field variation of the interlayer
conductance can be large, changing by several orders of
magnitude.

II. MODEL AND METHOD

A numerical approach and a semi-analytical approach
are used to give insight into the interlayer coupling. The
band structure calculations are performed using a tight bind-
ing p-bond model. The electron transmission and conduct-
ance are calculated using the non-equilibrium Green’s
function (NEGF) formalism. The interlayer transmission is
also calculated semi-analytically using Fermi’s golden rule
and compared with NEGF results. The calculation methods
and the device structure are discussed below.

A. Misoriented bilayer structures

Figures 1(a) and 1(b) show the schematic structure of
the four-terminal misoriented bilayer graphene nanoribbon
(mBGNR). It consists of two GNRs, an AGNR placed on top

of a zigzag nanoribbon (ZGNR) with a vertical separation of
3.35 Å. The alignment of the two GNRs corresponds to a
crystallographic misorientation angle of 30". A 30" rotation
is an incommensurate rotation angle,8 so that there is no peri-
odicity in the bilayer structure. The top view of a section of
the bilayer shown in Fig. 1(c) displays the Moire pattern
resulting from the two misoriented graphene layers. Two
types of mBGNRs are considered, symmetric structures in
which both GNRs have the same width as shown in Fig. 1(a)
and asymmetric structures in which the AGNR is narrower
than the ZGNR as shown in Fig. 1(b). The asymmetric struc-
tures serve to move the overlap region away from the zigzag
edges, which dominate the low-energy interlayer
transmission.

The contact regions denoted by the gold termination at
the ends of the nanoribbons are treated as semi-infinite con-
tinuations of the individual armchair or zigzag ribbon with
no interlayer coupling. Physically, such a system would be
implemented using a thin insulator such as BN with a win-
dow etched out. In the area of the window, the graphene
layers would be in intimate contact. The contacts would be
made outside of the window to the individual layers sepa-
rated by the insulator.

B. Numerical model

The interlayer transport of the mBGNR is calculated
using a tight-binding (TB) Hamiltonian with the NEGF for-
malism52,53 in the presence of an external perpendicular
magnetic field. The intralayer nearest-neighbor hopping pa-
rameter is c0¼ 3.16 eV. The interlayer hopping between

FIG. 1. mBGNR structures. In both structures, the top layer is armchair and
the bottom layer is zigzag. Structure (a) will be referred to as the symmetric
mBGNR since the dimensions of the top and bottom layers are identical.
The 4 contacts to the structure are labeled. Structure (b) will be referred to
as the asymmetric mBGNR, since the width of the armchair layer is less
than that of the zigzag layer. For both structures, different widths are consid-
ered. The Moire pattern resulting from the overlap is shown in (c).
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atom i on the top layer and atom j on the bottom layer is cal-
culated using cij ¼ c1e%3ðdij%d0Þ, where dij is the distance
between atom i and atom j, c1¼ 0.39 eV is the interlayer
nearest neighbor hopping, and d0¼ 3.35 Å is the inter-GNR
distance.54 The inplane cutoff distance is 3acc, where acc is
the C-C bond length. The applied perpendicular B-field of
B¼ (0, 0, Bz) induces a vector potential A¼ (–Bzy, 0, 0). In
the presence of an external perpendicular magnetic field, the
coupling energy between neighboring atoms acquires a
Peierls phase factor.55 The coupling c0(1) is modified to
c0ð1Þ expðiq

Ð ln
lm

A ( dl=!hÞ, where ln(m) is the coordinate of atom
n(m). The magnetic field is included in both the channel and
the contact regions.

To compute the interlayer transmission T(E) of such
large aperiodic structures, the channel region is divided into
4acc wide blocks. Each block consists of a different number
of atoms due to the non periodicity. The Hamiltonian matrix
elements of these nonuniform blocks are used in a non-
uniform recursive Green’s function (RGF) algorithm to cal-
culate the Green’s function of the channel as described in
Ref. 56. In the contact region, c1 is set to zero, so that the 4
contacts are isolated from each other. The self energies of
the four contacts are calculated with the decimation
method57 using a 1 meV convergence factor. The transmis-
sion between a left contact on the top GNR and a right con-
tact on the bottom GNR, T(E), is calculated from the
standard Green’s function expression

TðEÞ ¼ trfCa
1;1GR

1;NCz
N;NðG

R
1;NÞ

†g; (1)

where the indices 1 and N indicate the first and last block-
layers of the mBGNR channel, respectively. Denoting the
armchair contact self-energy on the left as Ra

1;1 and the zig-
zag contact self-energy on the right as Rz

N;N , then the injec-
tion matrices C in Eq. (1) are given by Ca

1;1 ¼ iðRa
1;1 % Ra†

1;1Þ
and Cz

N;N ¼ iðRz
N;N % Rz†

N;NÞ. The zero-temperature conduct-
ance G is given by

G ¼ e2

!h
TðEFÞ; (2)

where EF is the Fermi level. The MC ratio is

MC ) GðBÞ % G0

G0
; (3)

where G(B) and G0 are the conductance at a specific Fermi
energy calculated at finite magnetic field and zero magnetic
field, respectively. The diagonal elements of the spectral
function, Ai;iðEÞ ¼ %2ImGR

i;iðEÞ, where i is the atom index,
will be plotted to give insight into the spatial overlap of the
wavefunctions on the two GNRs.

C. Analytical model

The analytical expression for T(E) obtained from
Fermi’s golden rule is9

TðEÞ ¼ 4p2
X

m;n

jMm;nj2Nn
aðEÞN

m
z ðEÞ: (4)

The matrix element Mm,n is calculated between a ka state of
mode n on the AGNR and a kz state of mode m on the
ZGNR. Nn

aðEÞ and Nm
z ðEÞ are the 1D density of states of the

armchair and zigzag nanoribbon, respectively. T(E) depends
on both the magnitude of the matrix element squared
between the electron wavefunctions of the top and the bot-
tom layers and the joint density of states of the two GNRs.
The matrix element Mm,n is calculated using the electronic
wave functions of the isolated GNRs and expressed as

Mm;n ) hwm;kz
jHintjwn;ka

i; (5)

where jwm;ka
i and jwn;kz

i are the Bloch wavefunctions for the
armchair and the zigzag nanoribbons, respectively, and Hint

is the interlayer component of the tight-binding Hamiltonian.
The Bloch wavefunctions for the isolated armchair and zig-
zag nanoribbons are the eigenvectors of the tight-binding
Hamiltonian Hk for each nanoribbon. The wavefunctions are
extended over multiple unit cells of the nanoribbons using
Bloch’s theorem, wm;kðnaÞ ¼ eiknawm;kðn ¼ 0Þ, where a is
the unit cell length along the nanoribbon, and n is the integer
index of the unit cell.

III. RESULTS AND DISCUSSION

A. Magnetic field effect on the interlayer transport

Since the interlayer transmission can be calculated from
the wavefunctions and density-of-states of the individual
nanoribbons, it is useful to understand the effect of a mag-
netic field on the individual nanoribbons. First, consider the
energy-momentum (E – k) dispersion relations resulting
from the eigenvalues of Hk as a function of magnetic field.
The band structures of the individual 35 nm wide AGNR and
ZGNR are plotted at 4 values of perpendicular magnetic field
as shown in Figs. 2(a)–2(h).

For the AGNR, at low magnetic field (0–2 T), the 2nd
subband appears at 60.06 eV as shown in Figs. 2(a)–2(c). At
higher magnetic fields (10 T), the subbands shift to higher
energies as Landau levels begin to form.27,58,59 Also, as mag-
netic field increases (see Fig. 2(d)), the edge of the conduc-
tion band and the edge of the valence band flatten at the
Dirac point.

For the ZGNR, the electronic band structure exhibits a
flat band at the charge neutrality point even at B¼ 0 T due to
the localized edge states.27,60 At low magnetic field (0–2 T),
the 2nd subband appears at 60.09 eV. Like the AGNR, at
higher magnetic fields, the subbands of ZGNR move further
away.

The density of states of the individual nanoribbons that
appear in Eq. (4) are proportional to the inverse velocity
$ð@E=@kÞ%1. When the slope is flat, the density of states is
large, and Eq. (4) indicates that this could result in peaks in
the transmission. This is what will be observed in the NEGF
calculations of transmission.

As the density of states of the armchair ribbon near the
Dirac point increases with magnetic field, so also does the
spatial overlap of the armchair and zigzag wavefunctions.
Both wavefunctions become more localized near the edges
of the nanoribbons. The spectral function Ai,i(E) which is
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proportional to the squared magnitude of the wavefunction
on each atom in the unit cell consisting of 4 atomic layers is
plotted as a function of its x-coordinate across the width of
the nanoribbon in Fig. 3. Figs. 3(a) and 3(b) show the spatial
distribution of the wavefunctions of the top (AGNR) and the
bottom (ZGNR) layers of the 35 nm mBGNR, respectively,
at magnetic fields of 0 T and 10 T near the charge neutrality
point (E¼ 0.05 eV). At zero magnetic field, jwj2 of the
AGNR is distributed evenly across its width as shown in Fig.
3(a); whereas for the ZGNR, jwj2 is more localized away
from the center. At a magnetic field of 10 T, the magnitude
of jwj2 is maximum at the edges for both the AGNR and the
ZGNR. The redistribution of the wavefunctions towards the
edges of the GNRs and the flattening of the dispersion in
Fig. 2(d) indicate that Landau levels and edge states are be-
ginning to form. For wider GNR structures (W¼ 50 nm and
70 nm), the Landau levels form at lower magnetic fields
since the Landau levels begin to form when the cyclotron di-
ameter becomes smaller than the ribbon width.27,61

The expression for the transmission in Eq. (4) depends
on both the joint density of states and the matrix element
squared. As the magnetic field increases, the wavefunctions
of both the AGNR and the ZGNR have a higher weight at
the edges of the nanoribbon increasing their spatial overlap.
Also, as discussed above, the joint density of states near the
Dirac point increases. Thus, both the wavefunction and the
density of state dependence on the magnetic field suggest
that the interlayer transmission should increase near the
Dirac point as the magnetic field increases.

The interlayer transmissions T(E) calculated from
NEGF for the symmetric 35 nm, 50 nm, and 70 nm mBGNRs
between contact 1 on the top GNR and contact 4 on the bot-
tom GNR (as shown in Fig. 1(a)) are plotted in Figs.
4(a)–4(c) for increasing values of magnetic field. At B¼ 0 T,
the magnitude of T(E) is low throughout the energy window
except near the charge neutrality point (E¼ 0). Near the
charge neutrality point, the transmission peaks result from
the edge states localized at the ZGNR edges. The low

FIG. 2. Energy band structure of 35 nm individual single layer ((a)-(d)) AGNR and ((e)-(f)) ZGNR at B¼ 0 T, 1 T, 2 T, and 10 T, respectively.

FIG. 3. Spectral function of (a) the top
AGNR and (b) the bottom ZGNR for
the symmetric 35 nm mBGNR struc-
ture at two different magnetic fields of
0 T and 10 T at Ef¼ 0.05 eV.
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magnitude of T(E) is consistent with the electronic decou-
pling found in recent experimental5 and theoretical studies8

of twisted bilayer graphene.
The coherent, interlayer conductance at zero magnetic

field and temperature of the 50 nm mBGNR at Fermi ener-
gies of 0.05 eV and 0.225 eV are $1:9 S=cm2 and
$100 S=cm2, respectively. At higher Fermi energies, the
coherent conductance increases due to the presence of
excited subbands. Bistritzer and MacDonald18 calculated an
interlayer conductance between two infinite graphene sheets
with a 30" misorientation angle and a Fermi energy of
0.26 eV of $0:4 S=cm2. Their result depends sensitively on
their value of the finite lifetime broadening which was
75 meV, so that a direct comparison of quantitative values is,
perhaps, not too meaningful. It is, however, possible that the
finite size increases the interlayer conductance due to the
presence of the zigzag edge states at low energy and multiple
modes at higher energies. An increase in the coherent inter-
layer conductance per unit area with decreasing width is con-
sistent with other calculations of crossed armchair
nanoribbons a few nanometers wide.9

The room-temperature, interlayer conductance between
infinite graphene sheets with a 30" misorientation angle is
mediated by a 30 meV beating-mode, interface phonon
resulting in a phonon-mediated conductance of $3#
105 S=cm2 at EF¼ 0.26 eV.19 This is 3 to 5 orders of magni-
tude larger than the coherent component of the conductance.
Thus, low temperature and low bias are required to observe
the coherent component of the conductance.19 At low bias
such that only the phonon adsorption channel is available,
the phonon-mediated current is proportional to the Bose-
Einstein factor. Reducing the temperature from 300 K to
18 K reduces this factor by 108, which would allow the
coherent component of the conductance to dominate
throughout the energy spectrum.

The transmission for all structures in Fig. 4 is asymmet-
ric around the charge neutrality point. Since the density of
states of the individual GNRs are symmetric around the
charge neutrality point, the matrix element in Eq. (4) must
be asymmetric. The asymmetry indicates that the coupling of
the conduction bands is stronger than that of valence bands.
Further analysis of the asymmetry using Fermi’s golden rule
will be discussed later. As the magnetic field is swept from 0
to 10 T, there can be several orders of magnitude change in
the interlayer transmission (see inset of Fig. 4(a)).

The abrupt steps in transmission such as those of the
35 nm mBGNR at 60.06 eV and 60.09 eV result from the
subbands in AGNR and ZGNR as previously discussed in
Fig. 2. At the highest magnetic field of 10 T, the increasing
energy of the Landau levels pushes the first step to higher
energies outside the domain of the graphs. The qualitative
trends in the transmission spectrum remain the same for the
wider 50 nm and 70 nm structures shown in Figs. 4(b) and
4(c), respectively. The primary difference is that the trans-
mission steps are more closely spaced since the subbands are
closer in energy.

In the symmetric mBGNRs, the edge states of the ZGNR
dominate the coherent transmission spectrum with peaks sev-
eral orders of magnitude above the rest of the low-energy
spectrum. To minimize the effect of the ZGNR edges, two dif-
ferent asymmetric mBGNR structures are considered where
the ZGNR is wider than the AGNR. The two different struc-
tures consist of a 25 nm wide AGNR on a 50 nm wide ZGNR
(50/25 mBGNR) and a 35 nm wide AGNR on a 70 nm wide
ZGNR (70/35 mBGNR). Two qualitative trends in the trans-
mission as a function of energy and magnetic field shown in
Fig. 5 are similar to those of the symmetric mBGNRs. There
is still large asymmetry between the electron and hole trans-
mission. The change in the low-energy transmission with
magnetic field is still large. There are also qualitative differen-
ces. The peak in transmission becomes narrower as the zigzag
edges are moved away from the overlap region. This is
expected since the edge states decay exponentially into the
body of the ribbon. In the largest structure, the asymmetry
around the charge neutrality point switches, such that the low-
energy hole transmission is larger than the low-energy elec-
tron transmission. The line-shape of the transmission resem-
bles that of a Fano resonance.62 Such a resonance results from
a localized state weakly coupled to the continuum. In this
case, there is the localized zigzag edge state weakly coupled
to the continuum state of the armchair nanoribbon.

To demonstrate that the Fermi’s golden rule expression
of Eq. (4) captures the essential physics of the interlayer
transmission, the transmissions of the 50/25 mBGNR struc-
ture calculated from Eqs. (4) and (1) are plotted in Fig. 6(a).
The semi-analytical transmission from Eq. (4) captures the
qualitative trends of the transmission including the large
asymmetry between the electron and hole transmission and
the peak near the charge neutrality point. The asymmetry
results from the matrix element. This demonstrated by the

FIG. 4. Transmission spectrum for different magnetic fields of the symmetric (a) 35 nm (b) 50 nm, and (c) 70 nm mBGNR structures.
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plot of the matrix element squared shown in Fig. 6(b). This
asymmetric nature results from the interlayer interaction and
stacking geometry. Lu et al.29 studied the magneto-
electronic properties of AA and ABC stacked graphite and
found that the interlayer interactions destroy the symmetry
about the Fermi level.

The coherent, interlayer magnetoconductance ratio as
defined in Eq. (3) can be large. The zero-temperature, coher-
ent magnetoconductance for 3 different structures with a
Fermi energy of 0.05 eV is plotted versus magnetic field in
Fig. 7. The narrowest 35 nm structure has the largest magne-
toconductance ratio, and the magnetoconductance ratio tends
to decrease with increasing width. For the 35 nm mBGNR
heterostructure, the magnetoconductance ratio increased

from 90% at 2 T to 15 000% at 10 T. The maximum magne-
toconductance ratio at 10 T of the 50 nm structure is 1300%
and that of the 50/25 structure is 450%.

IV. CONCLUSIONS

The coherent, interlayer conductance of misoriented gra-
phene nanoribbons is a strong function of energy and mag-
netic field. Experimental observation will require low
temperature (<20 K) and low bias (<30 mV) to remove the
phonon-mediated channel. When edge states are present in
or near the overlap region, they result in a large peak in the
coherent interlayer transmission at the charge neutrality
point. The peak is several orders of magnitude larger than
the surrounding low-energy transmission spectrum. The
width of the peak is reduced as the edge states are moved
away from the overlap region, since the edge states decay
exponentially into the nanoribbon. The coherent interlayer
conductance is consistently asymmetric around the charge
neutrality point for all structures with the value differing by
up to 3 orders of magnitude at EF¼60.05 eV. Since the den-
sity of states of the individual GNRs is symmetric, the asym-
metry results from the matrix element of the wavefunctions.
In the 70/35 structure in which the zigzag edge states have
been moved the furthest from the overlap region, the asym-
metry appears as a Fano resonance. This is consistent with
the localized edge states being weakly coupled to the contin-
uum states in the overlap region. The low-energy states ex-
hibit a high magnetoconductance ratio, and the
magnetoconductance ratio tends to increase as the width of
the nanoribbons decrease. The maximum value at 10 T is
15 000%.

FIG. 6. (a) Comparison of the semi-
analytical and the NEGF calculations
of the transmission for the 50/25 nm
mBGNR structure and (b) matrix ele-
ment square of 50/25 nm mBGNR
structure.

FIG. 5. Transmission spectrum for dif-
ferent magnetic fields of the asymmet-
ric (a) 50/25 nm mBGNR and (b)
70/35 nm mBGNR structures.

FIG. 7. Magnetoconductance ratios of different mBGNR structures at
Ef¼ 0.05 eV.
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