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Current switching by voltage control of the quantum phase has 
been demonstrated theoretically in crossed graphene nanoribbons. 
Notable features are the large suppression of the transmission over 
a wide range of energy of 1.2 eV at zero bias and the high 
sensitivity of the transmission to an applied bias, changing by 3 
orders of magnitude with a bias change of 0.15 V. The magnitude 
of the current is modulated by a factor of 1000. The area of the 
intersection that is the active region of the device is 1.8nm x 1.8nm 
consisting of 120 atoms.  
 

Introduction 
 
Interest in twisted, or misoriented, layers of graphene was recently motivated by the need 
to understand the electronic properties of multilayer graphene furnace-grown on the C-
face of SiC (1). Experimental analysis showed that the layers tended to be rotated with 
respect to each other at certain angles corresponding to allowed growth orientations with 
respect to the SiC substrate (2). Density functional theory calculations for such rotated 
bilayers found that the linear dispersion near the K-points was identical to that of single 
layer graphene (2). Thus, the rotation was found to be the cause of the decoupling, and 
the electronic states of the rotated layers of bilayer graphene were the same as those in 
isolated single-layer graphene. This picture was refined in a following study that found 
that for twist angles greater than ~3o, the low-energy carriers behave as massless Dirac 
Fermions and that for twist angles greater than 20o, the layers are effectively decoupled 
and act as independent layers of single-layer graphene (3). Theoretically, calculations of 
the density of states of randomly stacked graphene layers were first reported in 1992 (4). 
The more recent work has focused on calculating the energy-wavevector relation as a 
function of rotation angle using density functional theory (1,2,5,6,7), empirical tight 
binding (7, 8 ), and continuum models (9 ). These studies agree that the misaligned 
graphene bilayers have a linear dispersion for any rotation greater than a few degrees. 
Very recently there have been studies of the effect of an applied vertical electric field 
(7,10). There has been one calculation of conduction between two rotated graphene 
sheets using a pi-bond model and a transfer Hamiltonian expression for current between 
the two layers (11). This study found the conductance to be enhanced at commensurate 
angles with relatively small unit cells.  
 
Our work was initially motivated by a curiosity to understand the current-voltage (I-V) 
relation of two, independently contacted, overlapping, sheets of graphene (12,13,14). We 
initially considered two collinear armchair graphene nanoribbons (aGNR) 14 C-atoms 
wide (~1.8nm) with about the same length of overlap (12). The overlap region was 
arranged in both AB and AA stacking. The width was chosen as 3n+2 to minimize the 
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bandgap. For these GNRs, the bandgap is 130 meV. As bias was applied, the I-V curve 
exhibited a peak and region of negative differential resistance.  
 
We next considered two aGNRs crossed at right angles as shown in Fig. 1. In this 
configuration, the overlap region is neither AB nor AA stacking. For two infinite sheets, 
a 90o rotation is the same as a 30o rotation, which is not a commensurate rotation angle. 
The Moiré pattern can be observed at the intersection of the two nanoribbons in Fig. 1. 
The GNRs were terminated a few nanometers after the overlap region. In this crossed 
configuration, two current peaks were observed in the voltage region between 0 and 0.75 
V. Furthermore, the peak-to-valley current ratios were rather large, 13 for the first peak 
and 7 for the second (14,15). This nonlinear I-V relation with multiple current peaks 
attracted the attention of circuit designers for applications in high-density functional 
circuits (15,16). The multiple current peaks were the result of the finite stub effects 
similar to stub effects in transmission line or waveguide theory. Electronic waves are 
reflected back from the cut ends giving rise to resonances and anti-resonances as a 
function of energy. Further, unpublished calculations by us show that the voltage spacing 
of the current peaks is decreased by increasing the length of the stubs. This is what one 
would expect viewing the finite ends as resonant cavities. 
 

Infinite Crossed GNRs 
 
However, we were ultimately interested in understanding the current-voltage relation of 
two infinite, crossed GNRs where finite length effects played no role. This configuration 
seemed closer to something that might be feasible to build experimentally. Numerically, 
we converted the finite ends into infinite leads by applying self-energies at all four GNR 
ends shown in Fig. 1 (numerical details are provided below). The physics governing the 
charge transport in this system is very different from the physics of the finite crossbars 
described above.  

 

 
Figure 1.  Graphene nanoribbon crossbar. 
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When the two infinite GNRs are at the same potential, they are effectively decoupled 
electronically. On a linear scale, the decoupling appears to be perfect. The eigenenergies 
at the bandedges at Γ (kx = ky = 0) are doubly degenerate. Plots of the two corresponding 
eigenstates show one with all of its weight on the top GNR and the other on the bottom 
GNR. The amount of decoupling can be better determined by looking at the transmission 
coefficient on a log scale as shown in Fig. 2. There are several things to note. The zero of 

the energy scale corresponds to the Fermi level. The deep dip in transmission around E=0, 
corresponds to the 130 meV bandgap of the two GNRs. The transmission is strongly 
suppressed in the energy range of -0.7 eV < E < 0.7 eV. This is the energy range where 
there is only one mode propagating in each GNR. At E = ± 0.7 eV, the first excited mode 
turns on. Then there is significant coupling between the first-excited and the fundamental 
mode of the top and bottom GNRs. However, over a very large energy range of 1.6 eV 
(|E| < 0.8 eV), the transmission is suppressed by approximately 3 orders of magnitude. 
This suppression is the result of destructive quantum interference of the top and bottom 
wavefunctions. This was shown to be the decoupling mechanism for misoriented two-
dimensional sheets of graphene (6), and we have explicitly demonstrated that destructive 
phase interference is the physical mechanism for the decoupling and suppression of the 
transmission for the crossed GNRs.  
 
As the potential difference ΔE between the GNRs is increased, the transmission in the 
low-energy region increases rapidly with ΔE. Fig. 3 shows the transmission with ΔE = 
150 meV. The transmission in the low energy region has increased by 3 to 4 orders of 
magnitude. Again, this is purely the result of the change in the phase of one wavefunction 
with respect to the other. 

 
 
Figure 2. Transmission as a function of energy when the GNRs are at the same 
potential. All calculated points are shown. The Fermi level is set to E=0. The dip 
around E=0 corresponds to the 130 meV bandgap of the GNRs. 
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This sensitivity of the transmission to the energy difference of the two GNRs can be 
exploited with a built-in potential between the two GNRs. If we start with two GNRs that 
form a pn junction and apply a voltage as shown in Fig. 1, the applied bias will drive the 
two GNRs to equal potential. At that point the transmission will turn off. Calculation of 
the current voltage with an intial built-in potential of 0.25 eV results in the I-V curve 
shown in Fig. 4. At V=0.25 V, the potential between the two GNRs is driven to zero, and 
the current shuts off. The peak-to-valley current ratio is 1060.  
 

As we mentioned above, we have explicitly shown that the mechanism of current 
switching is voltage control of the quantum phase of the wavefunctions. To show this we 
have calculated the current from a transfer Hamiltonian expression 

                 I = 4πe dE Mn,m∫
2
N1D

m E( ) N1D
m E −U( ) f E − μ( ) − f (E − μ −U⎡⎣ ⎤⎦

m,n
∑  [1] 

where m and n designate the individual bands of the individual GNRs, N1D
i  is the 1D 

density of states of band i, f is the Fermi-dirac distribution, U=eV is potential energy due 
to the bias, and Mn,m = ψ n (ky ) H int ψ m (kx )  is the matrix element between the state 

 
Figure 3. Transmisison when the potential of the top GNR is lowered by 0.15 eV with 
respect to the bottom GNR. 

 
Figure 4. Current-voltage response of crossed graphene nanoribbons with a built-in 
potential of 0.25 eV. 
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ψ n (ky )  of the top GNR and the state ψ m (kx )  of the bottom GNR. The matrix element 
can be decomposed into four components, M = M AA + M AB + MBA + MBB, where MAA is the 
coupling between all the A atoms on the bottom GNR and all the A atoms on the top GNR 
and so on. The wavefunctions used for evaluating the matrix element are the analytical 
expressions derived in Ref. (17). We found that the interactions between the A atoms of 
one GNR with the B atoms of the other GNR are very weak compared to the interaction 
between the A(B) atoms of one GNR with the A(B) atoms of the other GNR. Thus, the 
value of the matrix element squared in Eq. [1] is solely a function of the MAA and MBB 
matrix elements. At zero bias MAA and MBB have equal magnitude but opposite sign 
making the resultant matrix element (M) very small. This leads to a strong suppression of 
the transmission at zero bias. This suppression is entirely the result of phase cancellation 
of the matrix element. At a higher bias, e. g., V= 0.25 V, the phase of MBB is modified by 
the phase difference between the electronic wave functions of the B atoms of the 
individual GNRs. This phase difference is caused by the external bias. As a result, the 
two terms MAA and MBB no longer cancel, the total matrix element is no longer small, and 
the transmission is no longer suppressed. This analysis confirms that current switching is 
the result of voltage control of quantum phases. 
 

Numerical Methods   
 

Density functional theory as implemented in FIREBALL combined with a non-
equilibrium Green function algorithm were used to calculate the transmission and I-V 
curves in Figs. 2-4. The details are the same as those described in Ref. (12). In calculating 
the I-V curve in Fig. 4, all of the applied potential is assumed to drop between the two 
GNRs. This makes sense from the point of view of a resistive voltage divider. The 
transmission of an ideal GNR is 1.0, whereas the transmission of the crossed GNRs in the 
region near the Fermi level is several orders of magnitude lower. Thus, the inter-GNR 
transfer is the rate-limiting step in the current flow, so that the crossing point is where the 
voltage will drop. We have repeated these calculations with a Huckel model that 
reproduces all of the features seen in the DFT results. 
 

Conclusion 
 
We have demonstrated current switching by voltage control of the quantum phase. 
Notable features are the large suppression of the transmission over an energy range of 1.2 
eV at zero bias, and the high sensitivity of the transmission to an applied bias, changing 
by 3 orders of magnitude with a bias of 0.15 V. The current is modulated by a factor of 
1000. The area of the intersection that is the active region of the device is 1.8nm x 1.8nm 
consisting of 120 atoms. This length scale is below any scale forseen in the ITRS 
Roadmap.  
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