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Current modulation by voltage control of the quantum phase in crossed graphene nanoribbons
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A relative rotation of 90◦ between two graphene nanoribbons (GNRs) creates a crossbar with a nanoscale
overlap region. Calculations, based on the first principles density functional theory (DFT) and the nonequilibrium
Green’s function (NEGF) formalism, show that the electronic states of the individual GNRs of an unbiased
crossbar are decoupled from each other similar to the decoupling that occurs in twisted bilayer graphene.
Analytical calculations, based on Fermi’s golden rule, reveal that the decoupling is a consequence of the
cancellation of quantum phases of the electronic wave functions of the individual GNRs. As a result, the
inter-GNR transmission is strongly suppressed over a large energy window. An external bias applied between the
GNRs changes the relative phases of the wave functions resulting in modulation of the transmission and current
by several orders of magnitude. A built-in potential between the two GNRs can lead to a large peak-to-valley
current ratio (>1000) resulting from the strong electronic decoupling of the two GNRs that occurs when they are
driven to the same potential. Current switching by voltage control of the quantum phase in a graphene crossbar
structure is a novel switching mechanism. It is robust even with an overlap of ∼1.8 nm × 1.8 nm that is well
below the smallest horizontal length scale envisioned in the international technology roadmap for semiconductors
(ITRS).
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I. INTRODUCTION

Lack of a band gap in graphene1,2 is one of the challenges for
achieving high ON/OFF current ratios in graphene field effect
transistors (FETs). The most obvious way to circumvent this
problem is to open a band gap, e.g., by using chemical doping,3

creating nanoribbons,4–6 or by applying a vertical electric field
in bilayer graphene.7–9 However, it is difficult to create a
sufficiently large band gap without degrading the electronic
properties of graphene. Another way is to utilize the unique
properties of graphene in alternative FET architectures.10–13 A
highly nonlinear current-voltage relationship can be obtained
in a graphene-insulator-graphene p-n junction.14 Some devices
exhibiting negative differential resistance (NDR) have been
proposed.15–19 However, most of these devices have relatively
complex architectures,12,13,15–17 limited scalability,10 or low
on-off or peak-to-valley current ratios.17–19 In this work, we
unveil a current switching mechanism in graphene crossbars
in which the current can be modulated by several orders of
magnitude. This switching mechanism is based on voltage
control of the relative phases of the electronic wave functions
of two crossed graphene nanoribbons. It does not rely on a
band gap, and it is not based on tunneling through or over a
potential barrier. It is relatively independent of temperature. It
is robust even when the overlap of the active region is scaled
down to ∼1.8 nm × 1.8 nm. This length scale is well below
any horizontal scale envisioned in the ITRS.20

Interest in twisted, or misoriented, layers of graphene was
recently motivated by the need to understand the electronic
properties of multilayer graphene furnace grown on the
C face of SiC.21 Experimental analysis showed that the
layers tended to be rotated with respect to each other at
certain angles corresponding to allowed growth orientations
with respect to the SiC substrate.22 Calculations, based on
density functional theory,21–24 empirical tight-binding,25 and
continuum26 models for such rotated bilayers found linear
dispersion near the K points. A recent experiment showed that

in twisted bilayer graphene for twist angles greater than ∼3◦,
the low-energy carriers behave as massless Dirac fermions
with a reduced Fermi velocity compared to that of single-layer
graphene, and that for twist angles greater than 20◦, the layers
are effectively decoupled and act as independent layers.27

A vertical electric field in a twisted bilayer graphene can
couple the layers28 and reduce the Fermi velocity.29 A recent
study of the conductivity between two infinite rotated sheets
of graphene found enhanced conductance at commensurate
angles with relatively small unit cells and negative differential
resistance at small biases.30

Although the physics of the decoupled layers in twisted
bilayer graphene has been studied extensively, it is not clear
if these properties still hold in the limit of nanoscaled device
dimensions, for example, in the twisted bilayer that occurs
in the overlap region of two crossed GNRs fabricated by
unzipping two carbon nanotubes.31 Botello-Méndez et al.
very recently addressed this issue performing both DFT
and empirical tight-binding calculations of the transmission
across and through crossed graphene nanoribbons.32 Crossed
armchair-zigzag (AZ) GNRs and crossed zigzag-zigzag GNRs
were considered. Most relevant to our work, was their study of
crossed AZ GNRs, approximately 5-nm wide, aligned in AB
stacking at right angles and then rotated. The minimum in the
interlayer transmission between the armchair GNR (aGNR)
and the zigzag GNR occurred when the angle of intersection
was 60◦. This is equivalent to the 90◦ angle of intersection
between two aGNRs, which is the system that we consider.

In this work, we analyze the physical mechanism of the
interlayer coupling at the nanoscale and its dependence on the
potential difference between the two layers, and we show that
it can be exploited for current switching by voltage control of
the wave function phase. The model structure shown in Fig. 1
consists of two armchair GNRs with one placed on top of
the other at right angles forming a GNR crossbar (xGNR). In
this case, the overlap region of the xGNR, which is neither
AA nor AB stacking, is a twisted bilayer with an area of
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FIG. 1. Atomistic geometry of the crossbar GNR (xGNR) con-
sisting of two H-passivated armchair GNRs with one placed on top
of the other rotated by 90◦. Each GNR is 14-C atomic layers wide
(∼1.8 nm) with a band gap of 130 meV. The contacts are modeled
by the self-energies of semi-infinite leads. The region bounded
by the broken lines is used as a supercell for the band structure
calculations.

∼1.8 nm × 1.8 nm and a twist angle of 90◦. For two infinite
sheets, a 90◦ rotation is the same as a 30◦ rotation which is
not a commensurate rotation angle. A Moiré pattern can be
observed at the intersection of the two nanoribbons in Fig. 1.

Calculations, based on ab initio density functional theory
(DFT) coupled with the nonequilibrium Green’s function
formalism (NEGF), show that the interlayer decoupling still
exists in such a small geometry containing approximately
220 C atoms leading to strong suppression of inter-GNR
transmission when the two layers are at the same potential.
An analytical model using Fermi’s golden rule reveals that
the suppression of the interlayer transmission results from the
cancellation of the quantum phases of the electronic wave
functions of the individual GNRs. An external bias applied
between the GNRs changes the relative phases of the wave
functions resulting in modulation of the transmission and
current by several orders of magnitude. The decoupling that
occurs when the GNRs are at equal potentials can be exploited
using a built-in potential similar to the one that occurs in a
p-n junction to produce negative differential resistance with
a large (>1000) peak-to-valley current ratio. A large, dense
array of crossed graphene nanoribbons, with each cross point
providing a nonlinear current-voltage response, could serve in,
for example, a cellular neural network,33 a memory array,34 or
provide added functionality to standard transistor circuits.35

While in this paper, we consider a two-terminal configuration,
one could also control the interlayer potential with gates, in
which case the physics described here could be exploited to
implement ultrascaled transistors.

II. METHOD

In this study, four different types of calculations are
performed. (i) Geometry optimization and (ii) band structure
calculations are performed using DFT. (iii) The electronic
transport of the xGNR is calculated using the NEGF formalism
coupled with DFT. (iv) The numerical results are explained
using analytical expressions for the wave functions in a π -
orbital basis. The calculation methods and the device structure
are discussed below.

A. Device structure

The crossbar structure consists of two H-passivated, arm-
chair GNRs shown in Fig. 1. In this arrangement, the GNR
along the y axis is placed on top of the GNR along the x axis
with a vertical separation of 3.35 Å in between. Throughout
the rest of the paper, the GNRs placed along x and y axes will
be referred to as the “bottom” and “top” GNRs, respectively.
Since we are interested in current modulation in the absence
of a band gap, the widths of the GNRs are chosen to be 14-C
atomic layers (3n + 2) ∼ 1.8 nm to minimize the band gap
resulting from the finite width. The band gap of the 14-aGNR,
calculated from DFT code FIREBALL36,37 is 130 meV, which is
in good agreement with Son et al.38 The area of the overlap
region of the xGNR is ∼1.8 nm × 1.8 nm. The total simulated
area between the four ideal leads indicated by the self-energies
in Fig. 1 is ∼7 nm × 7 nm.

The infinite xGNR, shown in Fig. 1, is constructed by
attaching the self-energies �t and �t ′ to the top GNR and the
self-energies �b and �b′

to the bottom GNR. Throughout this
article, the semi-infinite leads indicated by the self-energies
�t and �b are termed as top and bottom contacts respectively.

B. FIREBALL

The geometry optimization and the calculation of electronic
structures are performed with the ab initio quantum mechani-
cal molecular dynamics, DFT code FIREBALL36,39 using separa-
ble, nonlocal Troullier-Martins pseudopotentials,40 the BLYP
exchange correlation functional41,42 and a self-consistent
generalization of the Harris-Foulkes energy functional.43–47

A single zeta (single numeric) sp3 FIREBALL basis set is used.
These localized pseudoatomic orbitals are slightly excited due
to hard wall boundary conditions imposed at radial cutoffs,
rc, for each atomic species. The cutoffs are r1s = 4.10 Å for
hydrogen and r2s = 4.4 Å, and r2p = 4.8 Å for carbon.48

C. Structure relaxation

In order to construct the crossbar, the geometry of a
supercell of H-passivated single layer aGNR with periodic
boundary conditions is optimized using FIREBALL. The super-
cell, which has a length of eight atomic layers, is repeated
using the lattice vector �a = 8.77x̂ (Å). The relaxation is
performed until all the Cartesian forces on the atoms are
<0.05 eVÅ−1. In the self-consistent field calculation, a Fermi
smearing temperature of 50 K and self-consistent convergence
factor of 10−7 are used. The one-dimensional Brillouin zone
is sampled using 8k points during optimization. This relaxed
single-layer supercell is then repeated to construct longer GNR
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which, in turn, is used to construct the crossbar. No further
relaxation is performed for crossbar.

D. Band structure

The region indicated by the broken lines in Fig. 1 forms the
crossbar supercell for electronic band structure calculations.
The supercell is repeated with lattice vectors �a1 = 7.016x̂ and
�a2 = 7.016ŷ (nm). For the self-consistent field calculation,
the first Brillouin zone is sampled using a Monkhorst-Pack
scheme with a k mesh of 7 × 7. The electronic structure of
the supercell is calculated with FIREBALL using the basis,
pseudopotentials, functional, Fermi smearing temperature, and
convergence factor as described above.

E. Transport

The Hamiltonian matrix elements used in the NEGF calcu-
lation are generated from the FIREBALL super-cell calculation.
The matrix elements include the electron-electron interaction
at the DFT/BLYP level of theory in equilibrium. The matrix
elements of the external applied potential U are calculated
as 〈i,α|U |j,β〉 = Sαi,βj

[U (ri) + U (rj )]/2 where the indices
i and j label the atoms, the indices α and β label the
basis orbitals, and Sαi,βj

is the overlap matrix 〈i,α|j,β〉. This
approach in which the matrix elements of the external potential
have the same form as in an extended Hückel model has
been used by others.49 The approach captures the Stark effect,
but not nonequilibrium charge self-consistency. The applied
bias V is distributed symmetrically between the top and the
bottom GNRs such that the electrostatic potential energies are
U (ri) = −eV/2 for atoms on the top GNR and, U (ri) = eV/2
for atoms on the bottom GNR.

The matrix elements are used in a recursive Green’s
function (RGF) algorithm that utilizes nonuniform block
layers to calculate the Green’s function of the device, GR ,
as described in Ref. 48. The self-energies �t and �b are
calculated with the decimation method50 using a 10 meV
broadening factor. The transmission spectrum T (E) is then
calculated from the standard Green’s function expression,
T (E) = tr{�b

1,1GR
1,N�t

N,N (GR
1,N )†}, where the indices 1 and

N indicate the first and last block-layers of the xGNR,

respectively, �b
1,1 = i(�b − �b†), and �t

N,N = i(�t − �t †).
The coherent current is calculated from

I = 2e

h̄

∫
dE

2π
T (E)[f (E − (μ + eV/2))

− f (E − (μ − eV/2))], (1)

where f (E) is the Fermi function and μ is the equilibrium
Fermi level. The temperature is 300 K for all current calcula-
tions.

F. Analytical model

An expression for the current flow between the two GNRs
can also be obtained from Fermi’s golden rule using analytical
expressions for the wave functions and empirical tight-binding
parameters for the matrix elements. The transition rate from a
kx state of mode n in the bottom GNR to a ky state of mode m

in the top GNR is

1

τ
= 2π

h̄
|Mmn(kx,ky)|2δ(Em(ky) − 2U − En(kx)), (2)

where Ei(k) is the energy-wave-vector relation of an indi-
vidual GNR for mode i. U = eV/2 is the magnitude of the
electrostatic potential energies of the individual GNRs. The
matrix element Mmn is calculated between the kx state on the
bottom GNR and the ky state on the top GNR, and the detailed
expression is given below in Eq. (13). The current is obtained
by multiplying Eq. (2) with the Fermi factors of the top and
bottom contacts [f (En − (μ + U )) − f (Em − (μ − U ))] and
summing over all initial and final states. The sum over kx and
ky gives the joint density of states of the top and bottom GNR,∑

kx ,ky

δ(Em(ky) − 2U − En(kx))

=
∫

dENn
1D(E − U )Nm

1D(E + U ), (3)

where Ni
1D is the single-spin, 1D density of states for mode i

that has the units of (energy−1). The final expression for the
current is

I = 4πe

h̄

∑
m,n

∫
dE|Mmn|2Nn

1D(E − U )Nm
1D(E + U )

× [f (E − (μ + U )) − f (E − (μ − U ))], (4)

which has the same form as the equation for current obtained
for 2D twisted bilayer graphene.30 Comparing Eq. (1) with
Eq. (4) gives the analytical expression for the transmission,

T (E) = 4π2
∑
m,n

|Mmn|2Nn
1D(E − U )Nm

1D(E + U ). (5)

The expression for the matrix element Mmn can be obtained
from the expression for the electronic wave function of
a single-layer aGNR as follows. The energy-wave-vector
dispersion relationship of band n of an N -atomic layers wide
aGNR can be written as51

En(k) = ε + sgn(n)|t̃n(k)| (6)

with

t̃n(k) ≡ 〈ψnkA|H |ψnkB〉 = −t0[2eikacc/2 cos(θn) + e−ikacc ],

(7)

where ε is the site energy of the carbon atoms, k is the
wave vector, sgn is the signum function, t0 is the in-plane
nearest-neighbor hopping parameter, acc is the C-C bond
length, and θn = |n|π

N+1 . The corresponding electronic wave
function is given by51

|ψnk〉 = 1√
2

(|ψnkA〉 + sgn(n)e−i
nk |ψnkB〉) (8)

with


nk = 
 t̃n(k) (9)

and

|ψnkα〉 =
√

2

Nx(N + 1)

N∑
p=1

Nx∑
q=1

eikxq sin(θnp)|αpq〉, (10)
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where α ∈ {A,B} represents the A or B atomic sites, p and
q count the atomic layers and the unit cells, respectively, and
Nx is the total number of unit cells considered. |αpq〉 is the pz

orbital of the atomic site α in the unit cell q and atomic layer
p of the GNR. The matrix element Mmn can be resolved into
four components,

Mmn ≡ 〈ψmky
|Hint|ψnkx

〉 (11)

= MAA
mn + MAB

mn + MBA
mn + MBB

mn (12)

= 1

2

∑
α=A,B

∑
β=A,B

Cαβ
mnH

αβ
mn, (13)

where

CAA
mn = 1, (14)

CAB
mn = sgn(n)e−i
nkx , (15)

CBA
mn = sgn(m)ei
mky , (16)

CBB
mn = CAB

mn CBA
mn = sgn(nm)ei(
mky −
nkx ), (17)

and

Hαβ
mn ≡ 〈ψmkyα|Hint|ψnkxβ〉 (18)

= 2√
NxNy(N + 1)

N∑
p=1

Ny∑
q=1

N∑
p′=1

Nx∑
q ′=1

ei(kxxq′−kyyq )

× sin(θmp) sin(θnp
′)〈αpq |Hint|βp′q ′ 〉, (19)

where Hint is the inter-GNR interaction, p and q are the indices
of the atoms of the top GNR, and p′ and q ′ are the indices of the
the atoms of the bottom GNR. The quantity 〈αpq |Hint|βp′q ′ 〉 is
calculated using the empirical formula28

〈αpq |Hint|βp′q ′ 〉 = −t1e
−3(dpqp′q′−do), (20)

where t1 is the nearest-neighbor interlayer hopping parameter,
dpqp′q ′ is the distance between the atoms on the top and the
bottom GNRs, and do is the inter-GNR distance. The edge
effects were taken into account by replacing t̃n(k) in Eq. (9) by
t̃n(k) + δt̃n(k) where δt̃n(k) is the correction for the edge bonds
following Ref. 51. While calculating Mmn, the site energies of
the C atoms of the top and the bottom GNRs are rigidly shifted
by −eV/2 and eV/2, respectively, to include the effects of the
external bias voltage V .

For all the calculations presented below, the hopping
parameters are t0 = 3.16 eV and t1 = 0.39 eV.28 For the 14
atomic layer aGNR (N = 14), the conduction-band subband
index is n = 10, and the valance-band subband index is
n = −10.

III. NUMERICAL RESULTS

A. Band structure

The band structure of the crossbar supercell, calculated as
described in Sec. II D using the DFT code FIREBALL, reveals
that the low-energy states of the top and the bottom GNRs
are electronically decoupled. The calculated band gap of the
xGNR is found to be ∼130 meV, which is equal to the band
gap of a single aGNR. The low-energy electronic dispersion

FIG. 2. (Color online) Band structure of the xGNR supercell
calculated using FIREBALL (a) as a function of kx and ky and (b)
as a function of kx only, at ky = 0. The energy E = 0 eV is set at
the Fermi level. The bands shown in (a) appear as a superposition of
bands of two isolated GNRs with one aligned in the x and the other
in y direction. The bands indicated by 1 and 2 in (b) are degenerate
at � indicating that they are decoupled.

of the xGNR as a function of wave vectors kx and ky shown in
Fig. 2(a) appears as a superposition of the band structures of

two infinite single aGNRs with one placed along the x axis
and the other along the y axis. To see this in more detail, the
electronic dispersion is plotted as a function of kx (at ky = 0)
in Fig. 2(b). The band indicated by 1 in Fig. 2(b) does not
have any dependence on kx , while band 2 is exactly the same
as the valence band of an isolated GNR along the x axis.
These two bands are degenerate at � that indicates that they
are decoupled from each other. This is confirmed by the 3D
contour plots of the population at � for bands 1 and 2 shown
in Figs. 3(a) and 3(b), respectively. Bands 1 and 2 are entirely
localized on the top and bottom GNRs, respectively. Therefore
bands 1 and 2 correspond to the valance bands of the top and
bottom GNRs, respectively. The decoupling is also consistent
with recent experimental27 and theoretical24 studies of twisted
bilayer graphene.

Coupling is observed between the fundamental modes and
the first excited modes. Bands 3 and 6 in Fig. 2(b) are the folded
valance bands of the the bottom GNR. Similarly, the bands 4
and 5 are the folded valance bands of the top GNR. Bands 7 and
8 are the first excited bands of the top and bottom GNRs. At
these energies, splitting is seen at the supercell Brillouin zone
edge. These are the energies where the transmission becomes
non-negligible. Similar analysis applies for the first excited
conduction bands.

FIG. 3. (Color online) Three-dimensional isosurface of the eigen-
state corresponding to (a) band 1 and (b) band 2 in Fig. 2(b) at �. The
eigenstate of band 1 is localized on the top GNR, and the eigenstate
of band 2 is localized on the bottom GNR.
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FIG. 4. (Color online) Current voltage (I-V) characteristic of the
intrinsic xGNR.

B. Transport

1. Intrinsic xGNR

The simulated current voltage (I-V) characteristic of the
xGNR corresponding to Fig. 1 is shown in Fig. 4. Initially,
the current increases sharply with the bias, reaches a peak at
∼0.2 V and then decreases exhibiting NDR. The origin of this
nonlinear behavior can be understood in terms of the inter-
GNR transmission plotted in Fig. 5. The transmission in the
unbiased xGNR shown in Fig. 5(a) is strongly suppressed in a
large energy window due to the decoupling of the fundamental
modes. The asymmetry in the transmission is consistent with
the fact that the electron-hole symmetry is broken in bilayer
graphene. The peaks near ±0.65 and ±0.9 eV are due to the
excited subbands. When the bias voltage is increased beyond
the band gap, e.g., at V = 0.15 V, the transmission within the
energy window defined by the chemical potentials of the top
and the bottom contacts increases several orders of magnitude
as shown in Fig. 5(b). The transmission between the chemical
potentials remains high until V ∼ 0.2 V, and then it decreases
resulting in NDR. The analysis in Sec. IV will show that

FIG. 5. (Color online) Transmission as a function of energy for
different bias voltages. The energy E = 0 eV is set at the equilibrium
Fermi level. The vertical lines represent the chemical potentials of
the top and the bottom contacts. The dips in the transmission near
the vertical lines correspond to energies lying inside the band gap of
either the top or the bottom GNR. The transmission does not go to
zero at these energies as a result of the finite energy broadening used
to calculate the surface self-energies of the contacts.

μ

FIG. 6. (Color online) Simulated I-V characteristics of xGNR p-n
junctions with different built-in potentials. Inset: Transmission of the
xGNR p-n junction for φbi = 0.25 V as a function of energy for
different bias voltages. The energy E = 0 eV is set at the equilibrium
Fermi level. The vertical lines represent the chemical potentials of
the top and bottom contacts.

the dependence of the transmission on the voltage difference
between the two GNRs results from voltage control of the
relative phases of the top and bottom GNR wave functions.
The most important point to take away from the transmission
plots in Fig. 5 is that the transmission is suppressed by several
orders of magnitude when the potential difference between the
GNRs at the cross point is zero.

2. xGNR p-n junction

The strong decoupling of the top and bottom GNR at zero
bias can be exploited by creating a built-in potential using
either field effect52,53 or chemical54,55 doping. For simplicity,
we assume that the built-in potentials of the p-doped top
GNR and n-doped bottom GNR are −φbi/2 and +φbi/2,
respectively, where φbi is the total built in potential. The
bias V is symmetrically distributed between the GNRs such
that the electrostatic potential energies of the top and the
bottom GNR are U = −e(V − φbi)/2 and U = e(V − φbi)/2,
respectively, and the potential difference between the GNRs is

U = e(V − φbi).

In Fig. 6, the calculated I-V’s through the xGNR are shown
for different built in potentials. All of the I-V’s show large
peak-to-valley current ratios summarized in Table I. The origin
of such large peak-to-valley current ratios can be understood by
looking at the transmission plots when φbi = 0.25 V as shown
in the inset of Fig. 6. The built-in potential of 0.25 eV between
the two GNRs results in a large transmission coefficient
at zero bias. Increasing the bias to V = 0.10 V decreases
the potential energy difference 
U between the GNRs to
0.15 eV and increases the difference of the chemical potentials
of the leads to 0.10 V. The current is proportional to the
area under the transmission curve between the two chemical

TABLE I. Calculated peak and valley currents for different built-
in potentials for xGNR p-n junction.

φbi Vpeak Vvalley Ipeak Ivalley

(V) (V) (V) (nA) (pA) Ipeak/Ivalley

0.20 0.05 0.20 32.5 34.4 945
0.25 0.09 0.25 57.9 54.8 1057
0.30 0.13 0.30 76.1 82.2 926
0.35 0.18 0.35 87.2 118.4 737
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FIG. 7. (Color online) Transmission as a function of energy for
different bias voltages calculated using Eq. (5). The energy E =
0 eV is set at the equilibrium Fermi level. The dashed vertical lines
represent the chemical potentials of the top and the bottom contacts.
The gaps in the transmission near the chemical potentials correspond
to energies lying inside the band gap of either the top or the bottom
GNR. Since the analytical calculations include no energy broadening,
the transmission is zero at those energies.

potentials. Increasing the bias drives the potential difference

U between the two GNRs to zero. At V = 0.25 V, the
potential difference between the GNRs becomes zero resulting
in strong suppression of the transmission over a large energy
window and strong suppression of current. Thus the large
peak-to-valley current ratios result from the strong modulation
of the transmission with voltage. The physical mechanism
governing the voltage dependence of the transmission is
analyzed in the next section.

IV. ANALYSIS

The inter-GNR transmission calculated from the analytical
expression given by Eq. (5) captures the essential physics
of the transmission and its dependence on the potential
difference of the two GNRs. The transmission calculated
from Eq. (5) is plotted in Fig. 7 for two different biases
with φbi = 0 corresponding to Figs. 4 and 5. At V = 0 V,
the transmission is strongly suppressed in the energy range
between the edges of the first excited subbands, which is
in agreement with the numerical calculations. The analytical
calculations also capture the asymmetry in the transmission
and the voltage modulation of the transmission. For example,
at 0.25 V, the transmission inside the energy window bounded
by the chemical potentials in Fig. 7(b) increases several orders
of magnitude. The gaps in the transmission correspond to
energies lying inside the band gap of either the top or the
bottom GNR. Since the analytical calculations include no
energy broadening, the transmission is zero at those energies.

Although Eq. (5) clearly shows that the transmission is
proportional to both the magnitude of the matrix element
squared and the joint density of states of the two GNRs, the
physics governing the transmission at low energies between
the fundamental modes is primarily determined by the matrix
element. For example, at V = 0 V, the matrix element squared
closely resembles the trend in the transmission at low energies
as shown by the black curve in Fig. 8(a). The joint 1D density
of states peaks at the band edges and, therefore, enhances the
transmission at the band edges. Similarly, the matrix element
squared at V = 0.25 V shown by the black curve in Fig. 8(b)
captures the main features of the transmission at low energies

αβ
αβ

FIG. 8. (Color online) Magnitude squared of the matrix element
and its four components considering only the fundamental modes.
The total matrix element squared and its components are indicated
according to the legend in (a). (a) V = 0 V. For E � 0 eV, m = 10 and
n = 10 and for E � 0 eV, m = −10 and n = −10. (b) V = 0.25 V.
For −0.06 < E < 0.06 eV, m = −10 and n = 10; for E < −0.19 eV,
m = −10 and n = −10; and for E > 0.19 eV, m = 10 and n = 10.
The AB and BA components are very small at low energies near
E = 0 compared to the AA and BB components in both cases. The
vertical lines represent the chemical potentials of the contacts.

and its enhancement by the applied bias. Hence the matrix
element governs the voltage dependence of the transmission,
and we shall concentrate only on Mmn below. In the discussion
below, we shall only consider the fundamental modes and
hence drop the subscript of M .

The matrix element consists of four components, M =
MAA + MBB + MAB + MBA as given by Eq. (12). These four
components plotted in Fig. 8 are labeled as “AA,” “BB,” “AB,”
and “BA.” At low energies, M ≈ MAA + MBB , since MAA

and MBB are orders of magnitude larger than MAB and MBA

for all bias voltages.
The cancellation of the phases of MAA and MBB suppresses

the matrix element and hence the transmission at V = 0 V.
This can be understood by looking at the phasor diagram,
Fig. 9(a), where the matrix element and its four components
are shown in polar coordinates at the conduction band edge.
The magnitude of M is very small since |MAA| ≈ |MBB | and

 MAA − 
 MBB ≈ 180◦.

The applied bias does not change |MAA| and |MBB |, but
it modulates the phase difference between these components
which, in turn, results in a significant change in the magnitude
of the total matrix element, M . For example, at V = 0.25 V,
the magnitudes of MAA and MBB shown in Fig. 8(b) remain
unchanged. Although |MAB | and |MBA| increase by an order
of magnitude, they are still several orders of magnitude smaller
compared to |MAA| and |MBB | and hence insignificant. The
applied bias changes 
 MBB by ∼60◦, while leaving 
 MAA

almost unchanged as shown in Fig. 9(b). Thus a bias voltage
of 0.25 V changes the phase difference, 
 MAA − 
 MBB from
180◦ to ∼120◦. As a consequence, the total matrix element
M ≈ MAA + MBB and the resulting transmission increase by
several orders of magnitude.
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FIG. 9. (Color online) Phasor plots of Mαβ
mn (a,b), Hαβ

mn (c,d), and Cαβ
mn (e,f). The AA, BB, AB, and BA components are indicated according

to the legend at the top of the figure. (a), (c), and (e) V = 0 V and E = 0.064 eV (the conduction band edge). (b), (d), and (f) V = 0.25 V
and E = 0 eV. The lengths and the directions of the arrows represent the magnitude and the angle of the corresponding complex quantities,
respectively. Since the AB and BA components of H and M are very small, they are magnified several orders of magnitude and shown in the
insets.

The voltage modulation of the phases of the major
components Mαα = 1

2CααHαα is controlled by the voltage
dependent quantum phase factors Cαα defined by Eqs. (14)
and (17). Figures 9(c) and 9(d) clearly show that the phases
of HBB and HAA are only slightly modified by the bias. On
the other hand, it is clear from Figs. 9(e) and 9(f) that the
bias changes the phase of CBB by ∼60◦. The phase of CAA

remains unchanged for all energies and for all biases due
to the particular construction of the wave function given by
Eq. (8). Thus the voltage dependency of the quantum phases
are lumped into the quantity CBB .

The asymmetry in transmission at zero bias results from
the phase factors CAB and CBA and the small difference
between |MAA| and |MBB |. At the conduction band edge,
n = 10 and hence 
 CAB = 
 sgn(n)e−i
nkx = −
nkx

, where

nkx

is a small angle. At the valance band edge, n = −10 and
hence 
 CAB = 
 sgn(n)e−i
nkx = 180◦ − 
nkx

. Thus 
 CAB

and hence 
 MAB at the conduction and valence band edges
differ by 180◦. The same is true for the phase of CBA and MBA.
The sum of MAB and MBA adds to MAA at the conduction
band edge as shown in Fig. 9(a), and the sum adds to MBB at
the valence band edge. |MAA| is slightly larger than |MBB |.
At the valence band edge, the addition of (MAB + MBA) to
MBB gives a better cancellation with MAA resulting in the
matrix element minimum shown in Fig. 8(a). At the conduction
band edge, the addition of (MAB + MBA) to MAA reduces
the cancellation with MBB resulting in a larger total matrix
element and increased transmission.

In a preliminary study of the sensitivity of the transport
properties to the detailed geometry of the overlap region, we
have considered four variations of the xGNR shown in Fig. 1:
the x and the y coordinates of the top GNR are shifted by (a)
acc/2 and (b) 3acc/2, (c) the width of both arms are increased
to 4.5 nm (38 atomic C layers), and (d) the width of the top
GNR is increased to 20 C atoms so that the xGNR consists of
a 14-aGNR and a 20-aGNR. Calculations, based on the model
presented in Sec. II F, show that the transport properties of
all of these xGNRs are similar to that of the crossbar shown
in Fig. 1. The I -V characteristics of these xGNRs with the
biasing scheme described in Sec. III B2 are all similar to the
I -V ’s shown in Fig. 6. The peak-to-valley current ratios for
the (a), (b), (c), and (d) configurations at φbi = 0.25 V are 100,
1000, 150, and 120, respectively.

V. CONCLUSIONS

We have performed ab initio DFT and NEGF based
calculations to study the inter-layer coupling and transport
properties of nanometer scale twisted bilayer graphene that
occurs in the overlap region of a crossbar consisting of two
GNRs with one placed on top of the other at right angles. The
GNRs in the crossbar are electronically decoupled from each
other similar to the decoupling that occurs in twisted bilayer
graphene. An analytical model based on Fermi’s golden rule
reveals that the decoupling is a consequence of the cancellation
of quantum phases of the electronic states of the individual
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GNRs. This leads to strong suppression of the inter-GNR
transmission when the two GNRs are at the same potential.
A potential difference between the GNRs changes the relative
phases of the top and bottom wave functions and destroys
the phase cancellation resulting in strong coupling and high
transmission. Thus the transmission can be modulated several
orders of magnitude by controlling the quantum phase using an
external bias. A built-in potential between the two GNRs can
lead to large peak-to-valley current ratios (>1000) resulting
from the strong electronic decoupling of the two GNRs that
occurs when they are driven to the same potential. Current

switching by voltage control of the quantum phase in graphene
crossbar structure is a novel switching mechanism. It is robust
even with an overlap of ∼1.8 nm × 1.8 nm containing only
∼220 C atoms that is well below the smallest horizontal length
scale envisioned in the ITRS.
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