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We show that the interplay between chiral tunneling and spin-momentum locking of helical surface
states leads to spin amplification and filtering in a 3D topological insulator (TI). Our calculations show that
the chiral tunneling across a TI pn junction allows normally incident electrons to transmit, while the rest are
reflected with their spins flipped due to spin-momentum locking. The net result is that the spin current is
enhanced while the dissipative charge current is simultaneously suppressed, leading to an extremely large,
gate-tunable spin-to-charge current ratio (∼20) at the reflected end. At the transmitted end, the ratio stays
close to 1 and the electrons are completely spin polarized.

DOI: 10.1103/PhysRevLett.114.176801 PACS numbers: 73.20.-r, 73.43.-f, 85.75.-d

Since their theoretical prediction and experimental veri-
fication in quantum wells and bulk crystals, topological
insulators (TIs) have been of great interest in condensed
matter physics, even prompting their classification as a
new state of matter [1]. The large spin orbit coupling in a TI
leads to an inverted band separated by a bulk band gap.
Symmetry considerations dictate that setting such a TI
against a normal insulator (including vacuum) forces a
band crossing at their interface, leading to gapless edge (for
2D) and surface (for 3D) states protected by time reversal
symmetry. At low energies, the TI surface Hamiltonian
H ¼ vFẑ · ðσ × pÞ [1] resembles the graphene Hamiltonian
H ¼ vFσ · p except that the Pauli matrices in TI represent
real spins instead of pseudospins in graphene. This sug-
gests that the chiral tunneling (the angle-dependent trans-
mission) in a graphene pn junction [2–5] is expected to
appear in a TI pn junction (TIPNJ) as well. Although
TIPNJs have been studied recently [6–8], the implication of
chiral tunneling combined with spin-momentum locking in
spintronics has received little attention.
The energy dissipation of a spintronic device strongly

depends on the efficiency of spin current generation. The
efficiency is measured by the spin-charge current gain
β ¼ ð2Is=ℏÞ=ðIq=qÞ, where Is and Iq are the nonequili-
brium spin and charge currents respectively. Increasing β
reduces the energy dissipation quadratically. The gain for a
regular magnetic tunnel junction is less than 1 [9]. The
discovery of giant spin Hall effect (GSHE) [10] shows a
way to achieve β > 1 by augmenting the spin Hall angle θH
with an additional geometrical gain [11]. The intrinsic gain
θH for various metals and metal alloys has been found to
vary between 0.07–0.3 [10,12,13]. Recently, Bi2Se3-based
TI has been reported to have a spin torque ratio (a quantity
closely related to θH) of 2–3.5 [14] and has been shown to
switch a soft ferromagnet at low temperature [15]. An
oscillatory spin polarization has also been predicted in TI
using a step potential [16].

In this Letter, we show that the interplay between the chiral
tunneling and spin-momentum locking in TIPNJ shown in
Fig. 1 leads to an extremely large, electrically tunable spin-
charge current gain β without even utilizing any geometric
gain. The chiral tunneling inTIPNJonly allows electronswith
very small incident angle to pass through; all other electrons
are reflected back to the source in the sameway as graphene.
As a result, charge current going through the junction
decreases. Because of spin-momentum locking, the injected
electrons have down-spin but the reflected electrons have up-
spin, which enhances the spin current at the source contact.
These result in a gate-tunable, extraordinarily large spin-
charge current gain. We show below that in a split-gate,
symmetrically doped TIPNJ, the spin-charge current gain is

β ≈
1þ Rav

1 − Rav
≈ π

ffiffiffiffiffiffiffiffiffiffiffi
qVod
ℏvF

s

ð1Þ

FIG. 1 (color online). (a) Cross section of the TIPNJ. The
source, the drain, and the gates are placed on the top surface of the
3D TI. The spatially separated gates create a graded pn junction.
(b) Top view of the device showing the directions of incident, the
reflected and transmitted electrons, and their spins. The spin of
the reflected wave is flipped due to spin-momentum locking,
which enhances the spin current at source. (c) Linear approxi-
mation of potential energy profile.
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at the source contact for small drain bias. Here, Rav is the
reflection probability averaged over all modes,Vo is the built-
in potential of the TIPNJ, and d is the split between the
gates. For large bias, Eq. (1) can be approximated as
β ≈ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qVod=ℏvF

p
. In a typical TIPNJ with d ¼ 100 nm,

Vo ¼ 0.3 V, and vF ¼ 0.5 × 106 m=s, β at source is∼30 for
small bias and∼20 for large bias. At drain, β remains close to
1. We also show below that the p region is highly spin
polarized since only the small angle modes (with spin-y
down) exist there. The large β in a TIPNJ does not require any
geometrical gain and can potentially be larger than the net
gain in GSHE systems like β-Ta and W [17] that rely on the
additional geometrical gain. In addition, it is gate tunable,
meaning that we can turn its value continuously from 1.5 to
20. The directions of spin and charge are parallel in TIPNJ, as
opposed to the transverse flow in GSHE.
The cross section and the top view of the model TIPNJ

device are shown in Figs. 1(a) and 1(b), respectively. The
3D TI is assumed to be Bi2Se3, which has the largest bulk
band gap of 350 meV. The source (S) and the drain (D)
contacts are placed on the top surface of the TI slab. We
assume that the electron conduction happens only on the
top surface. This is a good approximation for our device
with a thin TI slab; the device is operated within the bulk
band gap to minimize the bulk conduction and we numeri-
cally verified that only a small part of the total current goes
through the side walls, which was also seen in experiment
[18]. The p and n regions are electrically doped using two
external gates,G1 andG2, separated by the split distance d.
Such gate-controlled doping of TI surface states has been
demonstrated experimentally for Bi2Se3 [19]. The device

has a built-in potential Vo ¼ Vp þ Vn, distributed between
the p and n regions as shown in Fig. 1(c), assuming a linear
potential profile inside the split region. Electrons are injected
from source and collected at drain by a bias voltage VDS.
Although an equilibrium spin current exists on the TI

surface, it has no consequences for the measurable spin
current [20,21]. Therefore, we only considered the non-
equilibrium spin current. There has been a lot of discussion
of the equilibrium spin current in the literature [22–25].
In this Letter, we choose a biasing scheme that defines
the equilibrium state. We connect the drain contact to the
ground and reference the gates with respect to the ground
so that μD ¼ 0 and μS ¼ qVDS, where μD and μS are the
chemical potentials of the drain and the source contacts,
respectively. The equilibrium current, Is0 , is then defined by
VDS ¼ 0 and μD ¼ μS ¼ 0. The nonequilibrium spin cur-
rent is obtained by subtracting Is0 from the total spin current
calculated for nonzero bias (μD ¼ 0 and μS ¼ qVDS). A
detailed description of this method is discussed in the
Supplemental Material [26].
The spin current, the charge current, and the spin-to-

charge-current ratio are shown in Figs. 2–3 as functions of
gate bias of the p region. The solid lines were calculated
using Eqs. (2)–(4) and (S3) [26], evaluated at the source
and drain contacts. The discrete points were calculated
using the nonequilibrium Green’s function (NEGF) formal-
ism and the discretized k · p Hamiltonian that captures the
effects of edge reflections. Both analytical and numerical
simulationswere done for a devicewith lengthL ¼ 120 nm,
width W¼100nm, split length d¼100nm, drain bias
VDS¼0.1V, and gate voltage Vn ¼ 0.15 V at room temper-
ature. When the gate voltage of p region Vp ¼ 0.15 V, the

FIG. 2 (color online). Charge and spin current vs gate voltage
on the p side (Vp) at Vn ¼ 0.15 V. The charge and spin currents
at drain are reduced, whereas the spin current at source is
enhanced as the device is driven from nn (Vp ¼ 0.15 V) to
pn (Vp ¼ −0.15 V) regime. The analytical results (solid lines)
and the NEGF results (circles) are in good agreement. Inset: Spin
polarization in symmetric pn regime. In the p region only
transmitted modes (spin-down) exist, resulting in strong polari-
zation (blue). In the n region, both the incident (spin-down)
and the reflected modes (spin-up) exist; hence, it is mostly
unpolarized (green).

FIG. 3 (color online). Spin-charge current gain β vs Vp at
Vn ¼ 0.15 V. β increases at source as the device is driven from
nn to pn regime. The solid lines and the circles represent
analytical and NEGF results, respectively. Inset: Angle-
dependent normalized spin current densities at source and drain
in symmetric pn regime. Spin current at drain (JsyD) is carried by
small-angle modes only. All other modes contribute to source
spin current (JsyS) twice: (1) when they are injected and (2) when
they are reflected, since their spins are flipped.
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channel is a perfect nn type with uniform potential profile.
Thus, all the modes are allowed to transmit from the source
to the drain, and there is no reflection. Hence, the charge
current is maximum, the spin current at the source and drain
are equal, and β ¼ π=2 as shown in Fig. 3. When the gate
voltageVp is decreased to -0.15 V, the potential profile is no
longer uniform, the channel becomes a pn junction, and
most of the electrons are reflected back from the junction;
therefore, the charge current is reduced. Since the incident
and reflected waves have opposite spins, the reflected waves
enhance the spin current at the source end and β becomes
large at the source contact. In the drain contact, however,
only the transmitted electrons are collected and β remains
close to 1. Thus, β changes from 1.5 to 20 at source
contact and remains close to 1 at the drain when the device
is driven from the nn to the pn regime. The agreement
between the numerical and the analytical results shown in
Figs. 2 and 3 indicates that the physics described here is
robust against the edge reflection at finite drain bias and
room temperature.
Let us now derive Eq. (1) and analyze the underlying

physics. We start with the effective Hamiltonian for 3D TI
surface states and follow a similar procedure to that
described in Ref. [33] to obtain the continuity equation
for spin, ∂s=∂t ¼ −∇ · Ĵs þ Ĵω. Here, Ĵs is a rank 2 tensor
describing the translational motion of spin and Ĵω is a
vector describing the rate of change of spin density due to
spin precession at location r and time t. The quantity Ĵω is
also referred to as spin torque [33]. Among nine elements
of Ĵs, only Ĵxsy ¼ −ðℏvF=2ÞI and Ĵysx ¼ ðℏvF=2ÞI are
nonzero for TI where I is the identity matrix. The current
density operator Jxsy describes spin current carried by spin-y
along x̂ direction etc. Inside the gate regions where there is
no scattering, the angular term Jω is zero and the spin
current is conserved. However, at the pn junction interface,
electrons are reflected, which is accompanied by a change
in the spin angular momentum. As a result, inside the pn
junction interface, Jω ≠ 0 and the spin current is not
conserved [26]. At steady state, ∇ · Ĵs ¼ Ĵω and, hence,
for the two-terminal device shown in Fig. 1, the difference
between the spin currents at the source and the drain
terminal is the spin torque generated by the TIPNJ.
Similarly, we obtain the charge current density operators
Ĵx ¼ −qvFσy and Ĵy ¼ qvFσx, where Ĵx describes the
motion of electrons moving along the x̂ direction. For
the TIPNJ, since there is no net charge or spin transfer in
the ŷ direction, Jysx ¼ 0 and Jy ¼ 0.
The wave function of an electron in the n side

(x < −d=2) of the TIPNJ shown in Fig. 1 can be expressed
as jψi ¼ jψ ii þ rjψ ri where jψ ii is the incident wave,
jψ ri is the reflected wave, and r is the reflection
coefficient. The general form of spin-momentum-locked
incident wave with incident angle θi and energy E is
jψ ii ¼ ð1 − siieiθiÞTeiki·r=

ffiffiffiffiffiffi
2A

p
, where A ¼ WL is the

area of the device, ki is the wave vector with
magnitude ki ¼ ðjEþ qVnjÞ=ℏvF and direction θi, and
si ¼ sgnðEþ qVnÞ. Similarly, the reflected wave is
given by jψ ri ¼ ð1 − siieiθrÞTeikr·r=

ffiffiffiffiffiffi
2A

p
where kr ¼ ki

and θr ¼ π − θi. In the p side (x > d=2), only the
transmitted wave exists. Hence, the wave function
of electron is expressed as jψi¼tjψ ti with jψ ti ¼
ð1 − stieiθtÞTeikt·r=

ffiffiffiffiffiffi
2A

p
, where wave vector kt ¼

ðjE þ qVpjÞ=ℏvF, θt is the transmission angle, t is the
transmission coefficient and st ¼ sgnðEþ qVpÞ. Since the
potential along ŷ is uniform, the ŷ component of the wave
vector must be conserved throughout the device. Thus, we
recover Snell’s law for TI surface state: ki sin θi ¼ kt sin θt.
It follows from Snell’s law and the opposite helicity of
conduction and valence bands of TI surface states that the
transmission angle θt¼π−θt0 forE < −qVp and θt ¼ θt

0 for
E>−qVp, where θt

0¼sin−1½sinθiðEþqVnÞ=ðEþqVpÞ�.
For electrons with θi > θc ≡ sin−1½ðEþ qVpÞ=ðEþ qVnÞ�,
θt becomes complex and the electrons are reflected back
to the source.
Inside the junction interface (−d=2<x<d=2), the wave

vector varies in accordance with kðxÞ ¼ ðjE − VðxÞjÞ=ℏvF.
For electrons with kðxÞ < ki sin θi, the x̂ component of
kðxÞ becomes imaginary, the wave functions become
evanescent, and the electrons are reflected back.
Considering the exponential decay inside the interface
and matching the wave function across an abrupt pn
junction, the transmission coefficient can be written
as t ¼ e−ϕðsieiθi þ sie−iθiÞ=ðsie−iθi þ steiθtÞ, where ϕ ¼
R
κðxÞdx and κðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2i sin

2θi − k2ðxÞ
p

is the imaginary
part of kðxÞ.
Now, let us consider an electron injected from the source

at angle θi and energy E is transmitted from n to p and
collected at drain. The probability current density for the
transmitted electron is given by JqtðE; θiÞ ¼ jtj2hψ tjĴxjψ ti,
which leads to the general expression for the charge current
density,

JqðE; θiÞ≡ Jqt ¼
stqvF
A

jtj2 cos θtre−θtie−κtL; ð2Þ

where θtr ¼ Refθtg, θti ¼ Imfθtg, and κt ¼ Imfx̂ · ktg.
Similarly, the probability current density for the
incident wave is JqiðE; θiÞ ¼ siqvF cos θi=A. Hence, the
transmission probability is given by TðE; θiÞ≡ Jqt=Jqi ¼
ðcos θtr= cos θiÞjtj2e−θtie−κtL, which is the general form
of transmission probability in graphene pn junction as
presented in Refs. [2,4] and valid for all energies in the nn,
pn, and pp regimes. Similarly, the spin current density at
drain is

JsyDðE; θiÞ ¼ −
ℏ
2

vF
A

jtj2e−2θti e−κtL; ð3Þ
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where the negative sign indicates that the spin current is
carried by the down-spin. The spin current at source has two
components: (1) the incident current JsyiðE;θiÞ¼−ℏvF=2A
and (2) the reflected current JsyrðE; θiÞ ¼ −ðℏvF=2AÞjrj2.
Therefore, the total spin current density is

JsySðE; θiÞ ¼ −
ℏ
2

vF
A

ð1þ jrj2Þ; ð4Þ

where jrj2 ¼ 1 − jtj2. Equations (2)–(4) are valid for all
energies in the nn, pn, and pp regimes. The total current is
the sum of contributions from all electrons with positive
group velocity along x̂, weighted by the Fermi functions and
integrated over all energies [26]. Unlike the incident and
reflected components of charge currents, Jsyi and Jsyr have
the same sign. This is because when a spin-up electron is
reflected from the pn junction interface, its spin is flipped
due to the spin-momentum locking. Thus, a spin-down
electron going to the left has the same spin current as a spin-
up electron going to the right. Hence, the spin currents due to
the injected and the reflected electron add up, enhancing the
source spin current.
For symmetric pn junction, within the barrier (−qVn <

E < −qVp), the transmission coefficient is dominated by

the exponential term and becomes t ≈ e−πℏvFk
2
i dsin

2θi=2Vo .
Hence, t is nonzero for electrons with very small incident
angle (θi ≪ θc). For these electrons, e−θti ≈ 1, e−κtL ≈ 1,
and cos θi ≈ cos θtr. Therefore, the transmission proba-
bility becomes

TðE; θiÞ ≈ e−πℏvFk
2
i dsin

2θi=Vo ; ð5Þ
which has the same form as the transmission probability in
graphene pn junction [2,4]. The charge current density in
symmetric pn junction is then

JqðE; θiÞ ≈ q
vF
A
½1 − RðE; θiÞ� ð6Þ

and spin current densities at drain and source are

JsyD;SðE; θiÞ ≈ −
ℏ
2

vF
A

½1∓RðE; θiÞ�; ð7Þ

where the − and þ signs are for D and S, respectively, and
RðE; θiÞ ¼ 1 − TðE; θiÞ is the reflection probability.
Now, the spin-charge current gain can be expressed as
βðEFÞ ¼

R
dθ2qJsySðEF; θÞ=

R
dθℏJqðEF; θÞ in the low-

bias limit. For symmetric pn junction, β at the source
contact reduces to the first expression in Eq. (1), where
Rav ¼ ð1=πÞ R dθ½1 − e−πℏvFk

2
i dsin

2θi=Vo � is the average
reflection probability. When the Fermi energy is at the
middle of the barrier, ℏvFkF ¼ Vo=2 and β is given by the
second term of Eq. (1).
Equation (5) clearly shows that TðE; θiÞ is nonzero only

for electrons with very small θi. Hence, only these electrons
are allowed to transmit. For all other modes, the reflection
probability RðE; θiÞ ≈ 1 and those electrons are reflected

back from the pn junction interface to the source. Thus,
only few modes with small θi contribute to JsyD and Jq,
whereas all other modes contribute to JsyS, as shown in the
inset of Fig. 3. This is also consistent with the spin
polarization of TIPNJ shown in the inset of Fig. 2,
calculated using NEGF with negligible injection from
the drain. In the p side, only the transmitted waves exist
and the spins of these electrons are aligned to −ŷ due to the
spin-momentum locking. Therefore, the p side is highly
spin polarized, indicated by blue. On the other hand, in the
n side, both the incident and the reflected waves exist with
spins aligned to all the directions in x − y plane, leading to
the unpolarized n region indicated by green. This is
completely different from the uniform nn or pp device
where the spin polarization is 2=π throughout the channel
[27,34]. Thus, the spin polarization shown in Fig. 2 is a key
signature of the spin filtering and the amplification effect in
TIPNJ, which can be measured by spin-resolved scanning
tunneling microscopy.
One way to measure β is to pass the spin current through

a ferromagnetic metal (FM) by using the FM as the source
contact of TIPNJ. The magnetization of the FM needs to be
in-plane so that it does not change the TI band structure.
The spin current going through the FM will exert torque on
the FM, which can be measured indirectly using a spin-
torque ferromagnetic resonance technique [14] or directly
by switching the magnetization (along −ŷ) of soft ferro-
magnets such as ðCrxBiySb1−x−yÞ2Te3 at low temperature
[15]. Once the magnetization of the FM is switched from
−ŷ to þŷ, the current injection will stop (since spin-up
states cannot move towards right) and the system will reach
the stable state.
In summary, we have shown that the chiral tunneling of

helical states leads to a large spin-charge current gain due to
the simultaneous amplification of spin current and sup-
pression of charge current in a 3D TIPNJ. The chiral
tunneling allows only the near-normal incident electrons to
transmit, suppressing the charge current significantly. The
rest of the electrons are reflected and their spins are flipped
due to the spin-momentum locking, enhancing the spin
current at the source end. The gain at drain, however,
remains close to 1, and the spin polarization becomes
∼100%. Any gate-controllable, helical Dirac-Fermionic pn
junction should exhibit a giant spin-charge current gain;
this may open a new way to design spintronic devices.
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